Controlling chemical turbulence by global delayed feedback: pattern formation in catalytic CO oxidation on Pt(110).
نویسندگان
چکیده
Control of spatiotemporal chaos is one of the central problems of nonlinear dynamics. We report on suppression of chemical turbulence by global delayed feedback using, as an example, catalytic carbon monoxide oxidation on a platinum (110) single-crystal surface and carbon monoxide partial pressure as the controlled feedback variable. When feedback intensity was increased, spiral-wave turbulence was transformed into new intermittent chaotic regimes with cascades of reproducing and annihilating local structures on the background of uniform oscillations. The global feedback further led to the development of cluster patterns and standing waves and to the stabilization of uniform oscillations. These findings are reproduced by theoretical simulations.
منابع مشابه
Pattern formation on the edge of chaos: mathematical modeling of CO oxidation on a Pt(110) surface under global delayed feedback.
Effects of global delayed feedback on diffusion-induced turbulence are studied in a realistic model of catalytic oxidation of carbon monoxide on Pt(110). Spatiotemporal patterns resulting from numerical simulations of this model are identified and analyzed using a transformation into the phase and the amplitude of local oscillations. We find that chemical turbulence can be efficiently controlle...
متن کاملPattern formation on the edge of chaos: experiments with CO oxidation on a Pt(110) surface under global delayed feedback.
Experiments with catalytic oxidation of carbon monoxide on Pt(110) show that chemical turbulence in this system can be suppressed by application of appropriate global delayed feedback. Different spatiotemporal patterns, seen near the transition from turbulence to uniform oscillations, are investigated. Such patterns include intermittent turbulence, oscillatory standing waves, cellular structure...
متن کاملPattern formation in a surface chemical reaction with global delayed feedback.
We consider effects of global delayed feedback on anharmonic oscillations in the reaction-diffusion model of the CO oxidation reaction on a Pt(110) single-crystal surface. Depending on the feedback intensity and the delay time, we find that various spatiotemporal patterns can be induced. These patterns are characterized using a transformation to phase and amplitude variables designed for anharm...
متن کاملControlling turbulence in a surface chemical reaction by time-delay autosynchronization.
A global time-delay feedback scheme is implemented experimentally to control chemical turbulence in the catalytic CO oxidation on a Pt(110) single crystal surface. The reaction is investigated under ultrahigh vacuum conditions by means of photoemission electron microscopy. We present results showing that turbulence can be efficiently suppressed by applying time-delay autosynchronization. Hyster...
متن کاملControl of Spatiotemporal Turbulence in Oscillatory and Excitable Media
Spatiotemporal turbulence or defect-mediated turbulence exists quite generally in excitable and oscillatory media such as chemical turbulence in reaction-diffusion systems and electrical turbulence in cardiac muscle. In many situations spatiotemporal turbulence is very undesirable. For example, ventricular fibrillation, the major reason behind sudden cardiac death, is a turbulent cardiac electr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 292 5520 شماره
صفحات -
تاریخ انتشار 2001